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The variational optimization of the energy with respect to the two-electron reduced-density matrix (2-RDM),
constrained byN-representability conditions, can determine the shape of molecular potential energy surfaces
with useful accuracy. In this paper, we apply the 2-RDM method with a first-order optimization algorithm
[Mazziotti, D. A. Phys. ReV. Lett.2004, 93, 213001] to investigating the potential energy surfaces of carbon
monoxide in the presence and absence of an electric field. Two beneficial characteristics of the 2-RDM
method for computing potential energy surfaces include the following: (i) its ability to capture multireference
effects without specifying any reference wave function or density matrix and (ii) its guarantee of a global
energy minimum in the variational optimization. The 2-RDM method produces electronic ground-state energies
with similar accuracy at equilibrium and nonequilibrium geometries in both the presence and the absence of
the electric field. Computed dipole moments are similar in accuracy to the values from the computationally
expensive configuration interaction with single, double, triple, and quadruple excitations. These surfaces have
important applications in quantum molecular control theory.

I. Introduction

Measurements of the interaction of radiation and matter in
experiments to explore blackbody radiation, the photoelectric
effect, and the hydrogen spectrum led to the development of
modern quantum theory.1 The probing of matter by radiation is
critical to understanding chemical structure and dynamics at the
molecular level. However, modeling the interaction of a
molecule with an electric field for use in dynamics and quantum
control requires knowledge of accurate potential energy surfaces.
Although surfaces may be generated from the fitting of
spectroscopic data, the most accurate surfaces are generally
computed through a repeated solution of the many-electron
Schrödinger equation for approximate electronic energies and
wave functions.2 In the present paper, we explore the computa-
tion of the potential energy surfaces for carbon monoxide in
the presence and absence of electric fields through the use of a
variational two-electron reduced-density-matrix (2-RDM)
method.3-22

Because the molecular Hamiltonian contains at most two-
electron interactions, the ground-state energy of anN-electron
system may be in principle determined from a knowledge of
the two-electron reduced density matrix (2-RDM).23 Variation-
ally minimizing the ground-state energy as a function of the
2-RDM, however, requires that the 2-RDM be constrained by
conditions to ensure that it is representable by anN-electron
density matrix.24 These constraints are calledN-representability
conditions, and the search for a manageable formulation of these
conditions is known as theN-representability problem.25,26The
variational calculation of the 2-RDM5-22 has been achieved with
useful accuracy by applyingN-representability constraints
known as positivity conditions6,26-28 and solving the optimiza-
tion by semidefinite programming. The research extends

variational 2-RDM work in the 1970s3,4 and research on the
contracted Schro¨dinger equation.29-33 Semidefinite pro-
gramming34-36 is a special type of constrained optimization in
which the objective function is a linear function of several
matrices that are constrained to be positive semidefinite.
Calculations of Nakata et al.7,9 and Mazziotti8,10,12 employ
primal-dual interior-point algorithms for semidefinite program-
ming to compute the 2-RDM with useful accuracy for a number
of atoms and molecules at both equilibrium and nonequilibrium
geometries. Mazziotti15,16has developed a first-order algorithm
that significantly decreases the floating-point and storage
requirements and permits application of the method to larger
molecules and basis sets. The first-order algorithm enables the
calculations in this paper.

In the present work, the variational 2-RDM method with
2-positivity conditions is employed to obtain the potential energy
surfaces of the carbon monoxide molecule in the presence and
the absence of electric fields. Two important characteristics of
the 2-RDM for these applications are (i) its ability to capture
multireference effects without specifying any reference wave
function or density matrix and (ii) its guarantee of a global
energy minimum in the variational optimization. Because the
positivity conditions treat correlation in a manner distinct from
many-body perturbation theory, the variational 2-RDM method
accurately treats regions of the potential energy surface,
corresponding to bond stretching, where multiple references
contribute. The global minimum in the 2-RDM method arises
from a mathematical property of the semidefinite programming
employed to perform the energy optimization. In both the
presence and the absence of electric fields the 2-RDM method
yields potential energy surfaces with useful accuracy. From the
2-RDM, both one- and two-electron properties may also be
evaluated. The dipole moment of carbon monoxide is computed
for different bond lengths, and the resulting 2-RDM moments
are compared to those from truncated and full configuration-
interaction calculations. Calculating potential energy surfaces
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for a molecule in the presence of an electric field has important
applications to molecular optimal control theory.37-39

II. Theory

After describing the essential ingredients of variational
2-RDM theory, we discuss two significant features of the
2-RDM method for the description of potential energy surfaces
in the presence and absence of electric fields: (i) independence
of the 2-RDM method from a mean-field reference both in the
N-representability conditions and in the initial 2-RDM guess
and (ii) the guarantee of a global minimum within semidefinite
programming which forestalls the calculation of spurious
potential energy surfaces.

A. Variational 2-RDM Method. Because electrons in an
atom or molecule interact pairwise, the energy of anN-electron
system may be expressed as a linear functional of the 2-electron
RDM (2D)23

where2K is the 2-electron reduced Hamiltonian whose matrix
elements in a spin-orbital basis are given by

In eq 2, ĥ is a one-electron operator, representing the kinetic
and nucleus-electron attraction contributions to the total energy
as well as the interaction between electrons and an electric field
andV̂int is a two-electron operator that describes the electron-
electron repulsion. Equation 1 suggests that the ground-state
energy may be obtained by straightforward minimization with
respect to the 2-RDM matrix elements. Not every 2-RDM,
however, corresponds to anN-electron wave function. To ensure
that the 2-RDM is derivable from anN-electron wave function,
N-representability constraints26 need to be imposed on the
2-RDM.

Some necessary constraints on2D26 are that it must be (i)
positive semidefinite (its eigenvalues nonnegative), (ii) Hermi-
tian, (iii) normalized, and (iv) antisymmetric with particle
exchange. Further restrictions may be derived by considering
the positivity of thep + 1 distinct metric (or overlap) matrices
associated withp-electron operators. Forp ) 2, we obtain the
2-positivity conditions6 that enforce the positivity of the
2-electron (2D), the 2-hole (2Q), and G (2G) metric matrices

The above metric matrices are linearly dependent, and the
following mapping relations between them may be derived by
rearranging the creation/annihilation operators:

and

where the 1-RDM arises from the integration (or contraction in
a matrix representation) of the 2-RDM

and the symbol∧ denotes the antisymmetric tensor product
known as the Grassmann wedge product.31 Because 2-positivity
is not sufficient for theN-representability of molecular 2-RDMs,
the set of 2-positive RDMs is larger than theN-representable
set, and variational RDM calculations with 2-positivity con-
straints yield lower bounds to the exact energies (i.e., energies
obtained from full-configuration-interaction calculations) in
finite basis sets. The 2-positivity conditions, although only
necessary forN-representability, have been shown to yield
accurate ground-state energies for molecules at equilibrium and
nonequilibrium geometries.6-19

B. Zero-Reference Method.The variational 2-RDM method
does not depend on a mean-field reference wave function or
2-RDM in either itsN-representability conditions or its initial
guess. Approximate many-body wave function methods use one
or more mean-field references to parametrize the Hilbert space
of many-electron excitations. In contrast, theN-representability
conditions in eq 3, known as 2-positivity constraints, do not
depend on any reference wave function or density matrix. They
define a convex set that includes all mean-field and correlated
N-electron wave functions. Because the 2-positive set of
2-RDMs yields the exact 2-RDM for all Hamiltonians with just
one-body terms, theN-representability conditions account for
all mean-field references. On the other hand, because the
N-representability conditions do not explicitly use any mean-
field reference wave function or 2-RDM, we can also say that
the variational 2-RDM method is a zero-reference method. The
2-RDM method can also be designed to be independent of any
reference in the initial guess through the selection of the initial
elements of the 2-RDM by a random number generator. The
ability to treat multiple references without specifying any
reference is especially useful for studying potential energy
surfaces where multiple references contribute at stretched
geometries. Calculations with the 2-RDM method indicate that
it yields similar accuracy at both equilibrium and nonequilibrium
geometries.

C. Global Energy Minimum. Electronic structure methods
may be classified as variational or nonvariational. The RDM
method employed in this work belongs to the former class since
it computes the energy by minimizing the energy expression in
eq 1 with respect to the elements of the 2-RDM. Unlike
traditional variational wave function calculations, the 2-RDM
method yields a lower bound on the exact ground-state energy
within a given one-electron basis set. The 2-RDM energy
optimization belongs to a special class of optimization known
as semidefinite programming.34,35

The general semidefinite optimization may be expressed in
its primal form

where the vector|c〉 defines the unconstrained system, the vector
|b〉 and matrixA enforce the linear constraints upon the primal
solution |x〉, and the operatorM maps the vector|x〉 onto the
matrix M(x) which is kept positive semidefinite. Similarly, in
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its dual formulation we have

where|y〉 is the dual solution and the matrixM(z) is restricted
to have nonnegative eigenvalues. For feasible solutions (i.e.,
the constraints in eqs 7 and 8 are satisfied), the primal and dual
solutions yield upper and lower bounds on the objective
function, respectively. Under mild assumptions,34 the primal and
dual solutions to the objective become equal at the optimal
solution vectors (〈c|xopt〉 ) 〈b|yopt〉), and the vanishing of the
difference between the primal and dual solutions, known as the
duality gap, guarantees a global extremum.

In the variational 2-RDM method with 2-positivity, the
solution|x〉 of the primal program is a vector of the three metric
matrices from the 2-RDM, the2D, the2Q, and the2G matrices

the vector|c〉 holds specific information about the quantum
system in the form of the two-particle reduced Hamiltonian

and the matrixA and the vector|b〉 contain the linear mappings
among the2D, 2Q, and 2G matrices in eqs 4 and 5, the
contraction [eq 6 and trace conditions (Tr(1D) ) N)], as well
as any spin constraints. The constraintM(x) g 0 in eq 7 restricts
the 2D, 2Q, and2G matrices to be positive semidefinite.

Because variational RDM theory belongs to the class of
positive semidefinite optimization problems, the ground-state
energy calculated by minimizing eq 1 with respect to the 2-RDM
elements will be a unique global minimum regardless of the
initial guess for the 2-RDM. For example, one may initiate the
energy minimization procedure with either a density matrix from
a Hartree-Fock (RHF) calculation or even a positive semidefi-
nite two-electron density matrix constructed from random
numbers. In methods such as coupled cluster which solve a
system of nonlinear equations there exist a family of mathemati-
cal solutions, and at geometries far from equilibrium, the ground-
state energies that are computed can be significantly influenced
by the initial guess for the parameters of the wave function.
Variational RDM calculations of Nakata et al.7,9 and Mazzi-
otti8,10,12employed primal-dual interior-point algorithms, such
as SDPA,40 SeDuMi,41 and SDPT3,42 to obtain the ground-state
energy; however, large computational requirements, in particular
memory and floating-point operation scaling (r8 and r16

respectively), limited applications to small molecules in minimal
basis sets. Mazziotti has implemented a first-order nonlinear
algorithm15,16that dramatically reduces the storage requirements
and the floating-point operations of the variational 2-RDM
method. Memory storage and floating-point operations scale as
r4 and r6 in the first-order nonlinear algorithm.

III. Applications

After summarizing computational details andN-represent-
ability conditions, we discuss results for the potential energy

surface of carbon monoxide in the presence and the absence of
electric fields.

A. Computational Details. To evaluate the accuracy of the
variational 2-RDM method for carbon monoxide, we employ
the valence double-ú basis set43 for which a solution of the
Schrödinger equation by full configuration interaction (FCI) can
be performed. All calculations use the abelianC2V group with
the bond axis along thez axis. The carbon atom is located at
the origin with the oxygen lying on the positivez axis. The
core 1s orbitals on the carbon and oxygen are frozen, but all
virtual orbitals are correlated. Ground-state energies are evalu-
ated for the range 0.9075 Åe R e 3.63 Å, whereR is the
carbon monoxide nuclear separation, and the equilibrium bond
length (Re) is 1.21 Å. Energies from restricted Hartree-Fock,
several levels of coupled cluster,44 such as CCSD, CCSD(T),
and CR-CCSD(T), and second-order multireference perturba-
tion theory (MRPT2) with an active space of eight orbitals are
evaluated at 46 nuclear separations (starting atR ) 0.9075 Å)
in increments of 0.0605 Å. All coupled cluster computations
use the previously converged amplitudes as the initial guess,
and orbital rotations are restricted in order to prevent sign
changes in the coupled cluster amplitudes. Energies from wave
function methods and the one- and two-electron integrals
necessary for the formation of2K in eq 2 are computed with
the GAMESS45 quantum chemistry package.

B. Summary of N-Representability Conditions. The fol-
lowing N-representability conditions on the 2-RDM are imposed:

(1) Hermiticity of the 2-RDM:

(2) Antisymmetry of upper and lower indices

enforced by storing the 2-RDM with basis functionsφ̃i,j )
1/x2(φi,j - φj,i).

(3) Trace conditions on the spin-blocks of the 2-RDM:

where roman and Greek letters indicate spatial and spin-orbitals
respectively andNs ) N/2.

(4) Closed-shell spin conditions:

(5) Positivity of the three different representations of the
2-RDM in eq 3.

(6) Mapping conditions between2D, 2Q, and2G.
(7) Contraction of the 2-RDM onto the 1-RDM:
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C. Results.1. Potential Energy Surface in the Absence of
an Electric Field.Table 1 shows the error in the coupled-cluster
[CCSD, CCSD(T), and CR-CCSD(T)] and 2-RDM* ground-
state energies relative to FCI at selected bond lengths. Because
the 2-RDM energies are consistently below the FCI values at
all bond distances by approximately the same amount, the
2-RDM* energies are defined by adding the difference between
the CCSD(T) and 2-RDM energies atR ) Re ) 1.21 Å to the
variational 2-RDM energy at each bond length. A similar
correction has been employed in calculations of bond dissocia-
tion in the diatomic moleculesN2 andC2

18 as well as several
organic molecules.17 The 2-RDM* energies are slightly above
the FCI energies for geometries around the equilibrium con-
figuration with the greatest error of-20.1 mH occurring at
intermediate nuclear separations aroundR ) 2.1780 Å. The
errors in the CCSD energies increase from 4.5 mH atR )
0.9075 Å to 63.9 mH atR ) 3.63 Å; the errors in CCSD(T)
become large and negative between-177.4 mH and-548.5
mH for R ∈ [2.178 Å, 3.63 Å], whereas the errors in the CR-
CCSD(T) energies increase from 1.3 mH atR ) 0.9075 Å to
47.9 mH atR ) 3.63 Å except for an error of-44.9 mH atR
) 2.178 Å. In Table 1, 2-RDM* and MRPT2 energies agree
with the FCI energies within 14.2 and 20.1 mH, respectively.
The curve from the 2-RDM* method in Figure 1 displays the
proper features of the FCI potential energy surface and remains
accurate at all bond lengths.

The initial guess for the coupled cluster solution at each
iteration may be selected (or seeded) by two approaches: (i)
setting all initial single and double transition amplitudes to zero
at each point on the potential energy surface or (ii) using the

converged amplitudes from the previous point computed on the
potential energy surface. For N2, which has been extensively
treated in the literature, either choice produces the same results,
but for CO, which has been discussed much less, the first seed
approach yields mathematical solutions to the nonlinear coupled
cluster equations forR g 2.1175 which are discontinuous from
the solutions near equilibriumR < 2.1175. The coupled-cluster
surface in ref 16, computed at only a few internuclear distances
by the first seed, jumps to the second solution forR g 2.1175.
The potential surface reported here is computed at a fine grid
spacing in internuclear separation with the second seed. The
2-RDM method, because of the uniqueness of the variational
2-RDM energy, yields the same potential energy surfaces
regardless of the initial guess for the 2-RDM.

The accuracy of the energy increases faster in wave function
methods than the accuracy of other molecular properties. For
example, a first-order wave function yields an energy correct
through second order in perturbation theory. In contrast, because
the 2-RDM energy is linear in the matrix elements in2D, the
errors in the 2-RDM from approximateN-representability
conditions appear linearly in both the energy and other proper-
ties. Thus, a variational 2-RDM theory that gives accurate
ground-state energies should also generate other properties such
as the permanent dipole moment with similar accuracy. The
error in the carbon monoxide dipole moment obtained from
variational RDM theory is compared to several levels of
truncated configuration-interaction (CI) results in Table 2. For
the considered bond lengths, the RDM dipole moments are
generally more accurate than CI with single and double
excitations (CISD), with the maximum error in the RDM dipole
being -0.0643 atomic units (a.u.). Adding triple excitations
(CISDT) does not significantly improve the CI results, whereas
the inclusion of quadruple excitations (CISDTQ) reduces the
error in the dipole moment by a factor of 10. The RDM dipole
moments are competitive with the values from the expensive
CISDTQ wave function method which scales computationally
as r.12

2. Potential Energy CurVes in the Presence of an External
Electric Field.For carbon monoxide in an electric field with a
strength of 0.10 a.u. applied in the negative and positivez
directions Tables 3 and 4 report the errors in the 2-RDM*,
coupled-cluster, and MRPT2 energies relative to FCI. For an
electric field of strength 0.1 a.u. in the negative direction, the
maximum deviations in the energies of 2-RDM* and MRPT2
from FCI are 7.6 and 14.0 mH, respectively. Figure 2 shows
that for the electric field in the negative direction the CCSD,
CR-CCSD(T), and 2-RDM* methods yield qualitatively similar
potential energy surfaces that properly describe the main features
of the FCI potential energy surface. The direction of the electric
field affects the accuracy of the 2-RDM* energies much less
than it affects the accuracy of the coupled cluster methods. For

TABLE 1: Error in the 2-RDM* Ground-State Energies
Reported for Various Bond Lengths Relative to FCI for CO
without an Electric Fielda

energy (H) energy error (mH)

R FCI 2-RDM* CCSD CCSD(T)
CR-

CCSD(T) MRPT2

0.9075 -112.6309 9.8 4.5 0.8 1.3 10.1
1.1495 -112.8969 3.2 9.5 1.4 3.1 10.0
1.2100 -112.8977 1.7 11.3 1.7 3.8 9.9
1.2705 -112.8882 0.2 13.4 1.9 4.6 9.8
1.7545 -112.7291 -11.6 36.7 1.2 15.4 7.6
2.1780 -112.6365 -20.1 23.3 -177.4 -44.9 4.9
2.7830 -112.5897 -13.9 44.7 -453.1 23.9 14.2
3.2065 -112.5821 -6.9 59.6 -537.4 43.2 10.1
3.6300 -112.5796 -3.3 63.9 -548.5 47.9 8.6

a The maximum deviation of the 2-RDM* energies is half as large
as the maximum deviation in any of the coupled cluster methods. The
two core 1s orbitals are frozen. The 2-RDM* energies are obtained
from a shift of 43.93 milliHartrees.

Figure 1. Comparison of the 2-RDM*, coupled-cluster, MRPT2, and
FCI potential energy surfaces of CO where all valence electrons are
correlated. 2-RDM* and MRPT2 accurately describe the features of
the FCI potential energy surface. The CCSD and CR-CCSD(T)
potential energy surfaces display an unphysical “hump” near 2.2 Å.

TABLE 2: Error in the Dipole Moment in Atomic Units
Relative to FCI from Variational 2-RDM Theory for
Selected Bond Lengths for CO without an Electric Fielda

dipole moment dipole error (a.u.)

R (Å) FCI 2-RDM CISD CISDT CISDTQ

0.9075 0.3384 1.42e - 2 -1.51e - 2 1.13e - 2 -1.55e - 3
1.1495 0.0093 2.44e - 5 -1.72e - 2 2.02e - 2 -2.90e - 3
1.2100 -0.0710 -3.85e - 3 -1.53e - 2 4.98e - 2 -2.90e - 3
1.2705 -0.1475 -1.03e - 2 -1.23e - 2 6.30e - 2 -2.58e - 3
1.7545 -0.5313 -6.43e - 2 1.17e - 1 2.17e - 1 2.28e - 2
2.1780 -0.4572 -2.28e - 3 3.36e - 1 1.02e - 1 7.24e - 2

a The 2-RDM dipole moments are often as accurate as the dipole
moments from configuration interaction with quadruple excitations.
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the field in the positive direction, all coupled cluster energies
are accurate close to the equilibrium geometry, but as the bond
length increases, their accuracy worsens. Both the CCSD and
CR-CCSD(T) energies are several hundreds of mHs above the
FCI for R g 2.1780 Å, and the CCSD(T) energy diverges for
R g 1.7545 Å. The maximum deviations in the energies of
2-RDM* and MRPT2 from FCI are 19.8 mH and 9.5 mH,
respectively. Although single-reference wave function methods
have difficulty with the positive field, MRPT2 yields its best
results in this case. Figure 3 shows that the 2-RDM* curve
follows closely the FCI result.

IV. Discussion and Conclusions

The variational 2-RDM method with 2-positivity conditions,
implemented by a first-order nonlinear algorithm for semidefi-

nite programming,15,16 is applied to compute the ground-state
potential energy surface of the carbon monoxide molecule in
the absence and in the presence of electric fields. Even without
an electric field, the calculation of the potential energy surface
of the carbon monoxide molecule is a challenging task because
proper treatment of the triple bond requires six-to-eight-particle
excitations from a single Slater determinant or Hartree-Fock
reference. We find that solving for the electronic structure of
carbon monoxide in the presence of an electric field can either
diminish or enhance the effects of the correlation along the bond
dissociation curve. Modeling molecules within electric fields,
therefore, provides a stringent test for electronic structure
methods since we can increase the effects of correlation beyond
their role in the absence of the field. Two advantages of the
variational 2-RDM method for describing bond dissociation both
with and without an electric field are as follows: (i) implicit
treatment of both single- and multireference correlation effects
without invoking either a Hartree-Fock reference or an active
space of references and (ii) uniqueness of its energies and
2-RDMs from the guarantee within semidefinite programming
that a solution is a global extremum.

Incorporating multireference correlation into a wave function
requires including many-electron excitations from the Hartree-
Fock reference determinant (single-reference methods) or few-
electron excitations from a large, carefully selected set of
reference determinants (multireference methods). Either ap-
proach must parametrize a wave function with all relevant many-
electron excitations. In contrast, the variational 2-RDM performs
the optimization on the space of two-electrons, more specifically,
on the convex set of 2-RDMs satisfying the 2-positivity
conditions. Because the set of 2-positive 2-RDMs contains the
set ofN-representable 2-RDMs, the 2-RDM is parametrized to
represent on the two-electron space any correlatedN-electron
wave function. The 2-positivity conditions must be sufficiently
stringent for a given type of two-body interaction to prevent
significant contamination of theN-representable 2-RDM solution
by non-N-representable 2-RDMs. Computational experience
indicates that the 2-RDM method with 2-positivity conditions
yields energies and properties of atoms and molecules with
useful accuracy. Furthermore, the method’s accuracy at equi-
librium geometries where single-reference correlation dominates
is similar to the method’s accuracy at stretched geometries where
multireference correlation effects are important.

The minimization of the energy with the 2-RDM method is
a special optimization problem known as a semidefinite
program. As explained earlier, under mild assumptions, a
solution to a semidefinite program is feasible in both its primal
and dual formulations if and only if it is a global extremum.

TABLE 3: Error in the 2-RDM* Ground-State Energies
Reported for Various Bond Lengths Relative to FCI for CO
with an Electric Field of -0.10 aua

energy (H) energy error (mH)

R FCI 2-RDM* CCSD CCSD(T)
CR-

CCSD(T) MRPT2

0.9075 -112.6443 7.6 4.5 0.6 1.2 12.9
1.1495 -112.9641 3.0 7.6 1.1 2.3 13.9
1.2100 -112.9793 2.1 8.5 1.2 2.6 14.0
1.2705 -112.9843 1.3 9.5 1.3 3.0 13.9
1.7545 -112.9261 -3.4 21.1 4.9 8.0 9.0
2.1780 -112.8924 -7.0 30.1 16.6 18.7 2.4
2.7830 -112.9216 -4.0 24.8 7.3 15.6 3.6
3.2065 -112.9730 -2.9 22.2 -11.5 10.6 4.0
3.6300 -113.0337 -7.3 20.5 -57.2 5.9 7.1

a The two core 1s orbitals are frozen. The 2-RDM* energies are
obtained from a shift of 44.05 milliHartrees (mH).

TABLE 4: Error in the 2-RDM* Ground-State Energies
Reported for Various Bond Lengths Relative to FCI for CO
with an Electric Field of 0.10 aua

energy (H) energy error (mH)

R FCI 2-RDM* CCSD CCSD(T)
CR-

CCSD(T) MRPT2

0.9075 -112.7161 13.5 4.3 1.0 1.5 9.5
1.1495 -112.9715 5.0 10.2 2.4 4.2 8.9
1.2100 -112.9711 3.0 12.4 3.0 5.3 8.8
1.2705 -112.9611 0.9 15.0 3.6 6.7 8.6
1.7545 -112.8306 -13.9 47.3 -10.8 26.0 6.8
2.1780 -112.8067 -12.5 88.6 -220.1 35.1 4.5
2.7830 -112.8666 7.8 184.2 -386.5 137.2 6.7
3.2065 -112.9257 16.1 236.4 -561.6 188.3 6.9
3.6300 -112.9900 19.8 276.1 -845.4 218.8 6.9

a The two core 1s orbitals are frozen. The 2-RDM* energies are
obtained from a shift of 44.05 milliHartrees (mH).

Figure 2. Comparison of the 2-RDM*, coupled-cluster, MRPT2, and
FCI potential energy surfaces of CO in an electric field of-0.10 au
where all valence electrons are correlated. 2-RDM*, CCSD, CR-
CCSD(T), and MRPT2 accurately describe the shape of the FCI
potential energy surface.

Figure 3. Comparison of the 2-RDM*, coupled-cluster, MRPT2, and
FCI potential energy surfaces of CO in an electric field of 0.10 au
where all valence electrons are correlated. Both the 2-RDM* and the
MRPT2 methods accurately capture the bend in the potential energy
surface at stretched geometries.
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The variational 2-RDM method, therefore, has the special
property that for a given Hamiltonian and set ofN-represent-
ability conditions its approximate energy and 2-RDM are unique.
In contrast, the Rayleigh-Ritz variational method for a wave
function with nonlinear parameters cannot in general determine
whether a local minimum is a global minimum. Moreover,
techniques that solve a system of nonlinear equations such as
the coupled-cluster method may have a family of mathematical
solutions. For carbon monoxide at equilibrium and stretched
geometries the 2-RDM method yields a unique ground-state
energy and 2-RDM independent of the initial guess for the
2-RDM, which may be the Hartree-Fock 2-RDM, the 2-RDM
from a nearby internuclear separation, or even a matrix of
random numbers.

The variational 2-RDM method with 2-positivity yields
accurate potential energy surfaces for carbon monoxide in both
weak and strong electric fields regardless of the orientation of
the field. For a field oriented in the negativezdirection, coupled
cluster methods such as CCSD and CR-CCSD(T) also provide
a good potential energy surface, but for a strong field oriented
in the positivez direction, these methods fail to describe the
qualitative features of the correct surface. Properties such as
the dipole moment may also be computed by the 2-RDM
method. The 2-RDM dipole moments at both equilibrium and
stretched molecular geometries are more accurate than those
obtained with truncated configuration interaction with single
and double excitations and even competitive with the compu-
tationally much more expensive truncated configuration interac-
tion through quadruple excitations. Further improvements in the
accuracy of 2-RDM potential energy surfaces will be explored
in future work by imposing additionalN-representability condi-
tions, such as full or partial 3-positivity conditions.6,8,11,19

Potential energy surfaces provide the landscape for chemical
reactions from spectroscopic constants and geometries to
quantum dynamics and kinetics. In experiments, the properties
of potential energy surfaces are probed by studying the
interactions of radiation with atoms and molecules, and in
quantum control theory, molecular processes from population
transfer to dissociation are controlled by tailoring laser pulses.
We demonstrate in this paper that the variational 2-RDM method
is capable of describing changes in a potential energy surface
from the interaction of a molecule with an electric field. One-
and two-electron properties such as the dipole moment may also
be computed. In future work, we plan to use the 2-RDM method
within optimal control calculations that adjust for the effect of
an electric field on a molecule’s electronic structure.37-39
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(23) Löwdin, P. O.Phys. ReV. 1955, 97, 1474. Mayer, J. E.Phys. ReV.
1955, 100, 1579.

(24) Tredgold, R. H.Phys. ReV. 1957, 105, 1421. Mizuno, Y.; Izuyama,
T. Prog. Theor. Phys.1957, 18, 33. Ayres, R. U.Phys. ReV. 1958, 111,
1453. Bopp, F.Z. Physik1959, 156, 1421.

(25) Coleman, A. J.; Yukalov, V. I.Reduced Density Matrices:
Coulson’s Challenge; Springer-Verlag: New York, 2000.

(26) Coleman, A. J.ReV. Mod. Phys.1963, 35, 668.

(27) Garrod, C.; Percus, J.J. Math. Phys.1964, 5, 1756.

(28) Erdahl, R. M.Int. J. Quantum Chem.1978, 13, 697.

(29) Colmenero, F.; Valdemoro, C.Phys. ReV. A 1993, 47, 979.
Colmenero, F.; Valdemoro, C.Int. J. Quantum Chem.1994, 51, 369.
Valdemoro, C.; Tel, L. M.; Perez-Romero, E.Phys. ReV. A 2000, 61,
032507.

(30) Nakatsuji, H.; Yasuda, K.Phys. ReV. Lett.1996, 76, 1039. Yasuda,
K.; Nakatsuji, H.Phys. ReV. A 1997, 56, 2648. Ehara, M.; Nakata, M.;
Kou, H.; Yasuda, K.; Nakatsuji, H.Chem. Phys. Lett.1999, 305, 483.

(31) Mazziotti, D. A.Phys. ReV. A 1998, 57, 4219. Mazziotti, D. A.
Chem. Phys. Lett.1998, 289, 419. Mazziotti, D. A.Phys. ReV. A 1999, 60,
4396. Mazziotti, D. A.Phys. ReV. E 2002, 65, 026704. Mazziotti, D. A.J.
Chem. Phys.2002, 116, 1239.

(32) Mukherjee, D.; Kutzelnigg, W.J. Chem. Phys.2001, 114, 2047.

(33) Harriman, J. E.Phys. ReV. A 2002, 65, 052507.

(34) Vandenberghe, L.; Boyd, S.SIAM ReV. 1996, 38, 49.

(35) Nesterov, Y.; Nemirovskii, A. S.Interior Point Polynomial Method
in ConVex Programming: Theory and Applications; SIAM: Philadelphia,
1993.

(36) Handbook of Semidefinite Programming-Theory, Algorithms, and
Applications; Wolkowicz, H., Saigal, R., Vandenberghe, L., Eds.; Kluwer:
Dordrecht, The Netherlands, 2000.

(37) Balint-Kurti, G. C.; Manby, F. R.; Ren, Q. H.; Artamonov, M.;
Ho, T. S.; Rabitz, H.J. Chem. Phys.2005, 122, 084110.

(38) Farnum, J. D.; Mazziotti, D. A.Chem. Phys. Lett.2005, 416, 142.

(39) Farnum, J. D.; Gidofalvi, G.; Mazziotti, D. A.J. Chem. Phys.,
submitted.

(40) Fujitsawa, K.; Kojima, M.; Nakata, K.Semi-definite Programming
Algorithm (SDPA), version 5.0; August 1999.

(41) Sturm, J.Self-Dual Minimization (SeDuMi) Algorithm: MATLAB
Program for Optimization oVer Symmetric Cones, version 1.05; August
1998.

(42) Toh, K. C.; Tutuncu, R. H.; Todd, M. J.SDPT3- a MATLAB
software package for semidefinite-quadratic-linear programming, version
3; August 2001.

(43) Dunning, T. H., Jr.; Hay, P. J. InMethods of Electronic Structure
Theory; Shaefer, H. F., III., Ed.; Plenum Press: New York, 1977.

(44) Szabo, A.; Ostlund, N. S.Modern Quantum Chemistry: Introduc-
tion to AdVanced Electronic Structure Theory; McGraw-Hill: New York,
1989.

(45) Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.;
Gordon, M. S.; Jensen, J. J.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.;
Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A.J. Comput. Chem.
1993, 14, 1347-1363.

5486 J. Phys. Chem. A, Vol. 110, No. 16, 2006 Gidofalvi and Mazziotti


